2-(BIPHENYL-4-YL)-5-PHENYL-1,3,4-OXADIAZOLE (PBD): ELECTROPHILIC 4'-SUBSTITUTION AND FOLLOWING TRANSFORMATIONS

†Antonín Kurfürst ${ }^{a}$, Pavel Lhoták ${ }^{a}$, Petr Nádeník a, Františka Raclová--Pavlíkoví ${ }^{b}$ and Josef Kuthan ${ }^{a}$
${ }^{a}$ Department of Organic Chemistry, Prague Institute of Chemical Technology, 16628 Prague 6
${ }^{\text {b }}$ Central Laboratories, Prague Institute of Chemical Technology, 16628 Prague 6

Received October 26, 1990
Accepted November 28, 1990

Abstract

PBD was converted into 4^{\prime}-substituted derivatives $I-X I I$ using usual electrophilic reagents. The decompositions of PBD, 4^{\prime}-acetyl derivative I and 4^{\prime}-nitro derivative $V I$ with hydroiodic acid gave 4^{\prime}-substituted 4-biphenylcarboxylic acids XIIIa-XIIIc and benzoic acid, respectively. The regioselectivity of the reactions was also proved by means of high resolution NMR spectroscopy.

2-(Biphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (PBD) is a well known organic luminophore and an active component of various liquid scintillators ${ }^{1,2}$. The PBD residue in other bifluorophoric molecules may be expected to significantly support their luminiscence properties. In connection with our interest in the synthesis of such more compex molecular systems we have investigated some electrophilic reactions of PBD affording mainly 4^{\prime}-substituted products suitable as intermediates for the mentioned purpose. No similar transformation of PBD has been published so far. The only nitration of similar 2,5-diphenyl-1,3,4-oxadiazole (DPD) has been reported ${ }^{3,4}$ to yield all the six possible dinitro derivatives substituted in both phenyl groups.

All attempts to realize a Friedel-Crafts acylation of PBD by the addition of acylating agent to a substrate-catalyst mixture ${ }^{6}$ have failed probably due to the chemical stability of a primary $\mathrm{PBD}-\mathrm{AlCl}_{3}$ complex towards the reagents. In agreement with this assumption 4^{\prime}-acetyl deriative I was found to be formed after dropping of PBD solution to a mixture of the catalyst $\left(\mathrm{AlCl}_{3}\right)$, acetyl chloride and dichloromethane at elevated temperature. 4^{\prime}-Bromoacetyl derivative $I I$ was then prepared in a similar way. Ketone I was further reduced with sodium borohydride into alcohol III, as well as converted into the corresponding hydrazone $I V$ by treatment with aqueous hydrazine hydrate. The dehydration of $I I I$ with $\mathrm{P}_{2} \mathrm{O}_{5}$ gave an interesting 4^{\prime}-vinyl monomer V.

$V I, X=\mathrm{NO}_{2}$
VII, $X=\mathrm{NH}_{2}$
VIII, $X=\mathrm{NHCOCH}_{3}$
$I X, X=\mathrm{SO}_{3} \mathrm{H}$
$X, X=\mathrm{SO}_{2} \mathrm{Cl}$
$V, \mathrm{X}=\mathrm{CH}=\mathrm{CH}_{2}$
XI, $X=B r$

Nitration of PBD in the presence of sulfuric acid yielded 4^{\prime}-nitroderivative $V I$ which was further reduced to the corresponding amine VII by several methods (zinc-ammonium chloride, sodium sulfide under PTC conditions and with the reagent $\mathrm{NaBH}_{2} \mathrm{~S}_{3}$ in THF). The 4^{\prime}-amino group in VII could be easily acetylated with acetic anhydride in pyridine to give the corresponding acetamido derivative VIII.

Sulfonation of PBD with sulfuric or chlorosulfuric acid were found to proceed just at room temperature. 4^{\prime}-Sulfonic acid $I X$ arising in both cases could be converted to the corresponding sulfonyl choride X only by additional treatment with thionyl chloride.

Bromination of PBD with bromine was observed to be extremely slow at $20^{\circ} \mathrm{C}$ while a tribromo derivative $X I I$ could be only isolated at elevated temperatures. The expected 4 '-bromo derivative $X I$ was, however, obtained by the treatment of PBD with N -bromosuccinimide in diluted sulfuric acid at $60^{\circ} \mathrm{C}$. Physico-chemical data of prepared compounds are given in Tables I and II.

A chemical evidence supporting the expected 4^{\prime}-regioselectivity in the electrophilic substitutions of PBD follows from the hydrolytic cleavage of the 1,3,4-oxadiazole ring A in PBD and its derivatives I and $V I$ with hydroiodic or hydrochloric acids ${ }^{5}$,
respectively (Table III). In all cases benzoic acid was isolated from the reaction mixtures excluding so any substitution in the ring B. The second isolated component was 4-biphenylcarboxylic acid (XIIIa) from PBD and 4'-acetyl-4-biphenylcarboxylic acid (XIIIc) from I under hydrolytic conditions. If a mixture of hydroiodic acid and phosphorus was used to decompose PBD derivatives I and $V I$ the reduction of acetyl

Table I
Analytical and IR data of compounds $I-X I I$

Compound	Formula(M.w.)	Calculated/Found			$\underset{\tilde{v}, \mathrm{~cm}^{-1}}{\mathrm{IR}}$
		\% C	\% H	\% N	
$\begin{aligned} & I \\ & \left(\mathrm{COCH}_{3}\right) \end{aligned}$	$\underset{(340 \cdot 4)}{\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}}$	$\begin{aligned} & 77 \cdot 62 \\ & 77 \cdot 89 \end{aligned}$	$\begin{aligned} & 4 \cdot 75 \\ & 4 \cdot 84 \end{aligned}$	$\begin{aligned} & 8 \cdot 23 \\ & 8 \cdot 21 \end{aligned}$	$1683 \mathrm{~s}(\mathrm{C}=0)$
$\begin{aligned} & I I^{a} \\ & \left(\mathrm{COCH}_{2} \mathrm{Br}\right) \end{aligned}$	$\underset{(419 \cdot 29)}{\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}}$	$\begin{aligned} & 63 \cdot 02 \\ & 63 \cdot 23 \end{aligned}$	$\begin{aligned} & 3.61 \\ & 3.74 \end{aligned}$	$\begin{aligned} & 6 \cdot 68 \\ & 6 \cdot 96 \end{aligned}$	$1677 \mathrm{~s}(\mathrm{C}=\mathrm{O})$
$\begin{aligned} & \text { III } \\ & \left(\mathrm{CHOHCH}_{3}\right) \end{aligned}$	$\underset{(342 \cdot 42)}{\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}}$	$\begin{aligned} & 77 \cdot 16 \\ & 77 \cdot 42 \end{aligned}$	$\begin{aligned} & 5 \cdot 31 \\ & 5 \cdot 49 \end{aligned}$	$\begin{aligned} & 8 \cdot 18 \\ & 8 \cdot 21 \end{aligned}$	$\begin{aligned} & 3580 \mathrm{~m} \\ & 1605 \mathrm{~s} \end{aligned}$
$\begin{aligned} & I V \\ & \left(\mathrm{C}\left(==\mathrm{NNH}_{2}\right) \mathrm{CH}_{3}\right) \end{aligned}$	$\underset{(354 \cdot 4)}{\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}}$	$\begin{aligned} & 74 \cdot 55 \\ & 74 \cdot 23 \end{aligned}$	$\begin{aligned} & 5 \cdot 13 \\ & 5 \cdot 28 \end{aligned}$	$\begin{aligned} & 15 \cdot 81 \\ & 15 \cdot 98 \end{aligned}$	$\begin{aligned} & 3360 \mathrm{~s}(\mathrm{~N}-\mathrm{H}) \\ & 3215 \mathrm{~s} \end{aligned}$
$\begin{aligned} & V \\ & \left(\mathrm{CH}=\mathrm{CH}_{2}\right) \end{aligned}$	$\underset{(324 \cdot 4)}{\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}}$	$\begin{aligned} & 81 \cdot 44 \\ & 80 \cdot 92 \end{aligned}$	$\begin{aligned} & 5 \cdot 00 \\ & 5 \cdot 38 \end{aligned}$	$\begin{aligned} & 8.63 \\ & 8.49 \end{aligned}$	$\begin{aligned} & 2900 \mathrm{~m} \\ & 1605 \mathrm{~s} \end{aligned}$
$\begin{aligned} & V I \\ & \left(\mathrm{NO}_{2}\right) \end{aligned}$	$\underset{(343 \cdot 2)}{\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}}$	$\begin{aligned} & 69 \cdot 97 \\ & 69.96 \end{aligned}$	$\begin{aligned} & 3.79 \\ & 3.71 \end{aligned}$	$\begin{aligned} & 12 \cdot 24 \\ & 12 \cdot 40 \end{aligned}$	$\begin{aligned} & 1538 \mathrm{~s}(\mathrm{~N}=\mathrm{O}) \\ & 1340 \mathrm{~s} \end{aligned}$
$\begin{aligned} & V I I \\ & \left(\mathrm{NH}_{2}\right) \end{aligned}$	$\underset{(313 \cdot 3)}{\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}}$	$\begin{aligned} & 76 \cdot 68 \\ & 76.09 \end{aligned}$	$\begin{aligned} & 4 \cdot 79 \\ & 4.93 \end{aligned}$	$\begin{aligned} & 13.42 \\ & 13.39 \end{aligned}$	$\begin{aligned} & 3400 \mathrm{~s}(\mathrm{~N}-\mathrm{H}) \\ & 3325 \mathrm{~s} \end{aligned}$
$\begin{aligned} & \text { VIII } \\ & \left(\mathrm{NHCOCH}_{3}\right) \end{aligned}$	$\underset{(353 \cdot 3)}{\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}}$	$\begin{aligned} & 74 \cdot 32 \\ & 74 \cdot 26 \end{aligned}$	$\begin{aligned} & 4.79 \\ & 4.98 \end{aligned}$	$\begin{aligned} & 11.82 \\ & 11.37 \end{aligned}$	$1658 \mathrm{~s}(\mathrm{C}=\mathrm{O})$
$\begin{aligned} & I X \\ & \left(\mathrm{SO}_{3} \mathrm{H}\right) \end{aligned}$	$\underset{(378 \cdot 3)}{\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}}$	$\begin{aligned} & 63 \cdot 68 \\ & 63 \cdot 28 \end{aligned}$	$\begin{aligned} & 3.47 \\ & 3.69 \end{aligned}$	$\begin{aligned} & 7 \cdot 42 \\ & 7 \cdot 04 \end{aligned}$	$\begin{aligned} & 1395 \mathrm{~s}(\mathrm{~S}=\mathrm{O}) \\ & 1150 \mathrm{~s} \end{aligned}$
$\begin{aligned} & X^{b} \\ & \left(\mathrm{SO}_{2} \mathrm{Cl}\right) \end{aligned}$	$\xrightarrow[(396 \cdot 8)]{\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SCl}}$	$\begin{aligned} & 60 \cdot 51 \\ & 60 \cdot 54 \end{aligned}$	$\begin{aligned} & 3.28 \\ & 3.40 \end{aligned}$	$\begin{aligned} & 7 \cdot 06 \\ & 6.96 \end{aligned}$	$\begin{aligned} & 1470 \mathrm{~s}(\mathrm{~S}=\mathrm{O}) \\ & 1160 \mathrm{~s} \end{aligned}$
$\begin{aligned} & X I^{c} \\ & (\mathrm{Br}) \end{aligned}$	$\underset{(377 \cdot 2)}{\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OBr}}$	$\begin{aligned} & 63 \cdot 68 \\ & 63 \cdot 28 \end{aligned}$	$\begin{aligned} & 3.47 \\ & 3.69 \end{aligned}$	$\begin{aligned} & 7 \cdot 42 \\ & 7 \cdot 04 \end{aligned}$	
$\begin{aligned} & X I I^{d} \\ & (3 \mathrm{Br}) \end{aligned}$	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OBr}_{3} \\ (532 \cdot 2) \end{gathered}$	$\begin{aligned} & 44 \cdot 86 \\ & 44 \cdot 97 \end{aligned}$	$\begin{aligned} & 2 \cdot 02 \\ & 2 \cdot 11 \end{aligned}$	$\begin{aligned} & 5 \cdot 23 \\ & 4 \cdot 86 \end{aligned}$	

[^0]and nitro groups took place affording 4^{\prime}-ethyl-4-biphenylcarboxylic acid (XIIIb) or 4'-amino-4-biphenylcarboxylic acid (XIIId), respectively. Hence, both substituents COCH_{3} and NO_{2} must be at the para-position of the ring D .

Table II
${ }^{1} \mathrm{H}$ NMR spectra of compounds $I-X I I\left(\delta, \mathrm{ppm} ; J, \mathrm{~Hz}^{a}\right)$

Compound (Subst.)	Position					
	$\begin{gathered} \text { Ring B } \\ 3.4 .5 \end{gathered}$	$\begin{gathered} \text { Ring B } \\ 2,6 \end{gathered}$	$\begin{gathered} \text { Ring C } \\ 2,6 \end{gathered}$	$\begin{gathered} \text { Ring C } \\ 3,5 \end{gathered}$	$\begin{gathered} \text { Ring D } \\ 2,6 \end{gathered}$	$\begin{gathered} \text { Ring D } \\ 3,5 \end{gathered}$
$\begin{aligned} & I^{b}\left(\mathrm{COCH}_{3}\right) \end{aligned}$	7.65 m	8.18 m	$\begin{array}{r} 8.27 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 8.01 \mathrm{~d} \\ & 8.5 \end{aligned}$	$\begin{array}{r} 7.93 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 8.11 \mathrm{~d} \\ & 8.5 \end{aligned}$
$\begin{aligned} & I I^{c} \\ & \left(\mathrm{COCH}_{2} \mathrm{Br}\right) \end{aligned}$	7.65 m	8.18 m	$\begin{array}{r} 8.29 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 8.03 \mathrm{~d} \\ & 8.4 \end{aligned}$	$J=8.3$	
$\begin{aligned} & I I I^{d} \\ & \left(\mathrm{CHOHCH}_{3}\right) \end{aligned}$	7.69 m	8.22 m	$J=8.5$		$J=8.2$	
$\begin{aligned} & I V^{e} \\ & \left(\mathrm{C}\left(=\mathrm{NNH}_{2}\right) \mathrm{CH}_{3}\right) \end{aligned}$	7.64 m	8.18 m	$\begin{array}{r} 8.23 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 7.95 \mathrm{~d} \\ & 8.3 \end{aligned}$	$J=8.4$	
$\begin{aligned} & V^{f, i} \\ & \left(\mathrm{CH}=\mathrm{CH}_{2}\right) \end{aligned}$	7.55 m	8.16 m	$\begin{array}{r} 8 \cdot 20 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 7.76 \mathrm{~d} \\ & 8.4 \end{aligned}$	$J=8 \cdot 3$	
$\begin{aligned} & V I \\ & \left(\mathrm{NO}_{2}\right) \end{aligned}$	7.65 m	8.19 m	$\begin{array}{r} 8.31 \mathrm{~d} \\ \quad J= \end{array}$	$\begin{gathered} 8.06 \mathrm{~d} \\ 8.5 \end{gathered}$	$\begin{array}{r} 8.09 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 8.36 \mathrm{~d} \\ & 8.4 \end{aligned}$
$\begin{aligned} & V I I^{g} \\ & \left(\mathrm{NH}_{2}\right) \end{aligned}$	7.68 m	8.22 m	$\begin{array}{r} 8 \cdot 19 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 7 \cdot 88 \mathrm{~d} \\ & 8.4 \end{aligned}$	$\begin{gathered} 7 \cdot 58 \mathrm{~d} \\ J= \end{gathered}$	$\begin{aligned} & 6 \cdot 83 \mathrm{~d} \\ & 8.4 \end{aligned}$
$\begin{aligned} & V I I I^{h, i} \\ & \left(\mathrm{NHCOCH}_{3}\right) \end{aligned}$	7.56 m	8.17 m	$\begin{array}{r} 8.20 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 7.74 \mathrm{~d} \\ & 8.4 \end{aligned}$	7.64 s	7.64 s
$\begin{aligned} & I X \\ & \left(\mathrm{SO}_{3} \mathrm{H}\right) \end{aligned}$	7.69 m	8.23 m	$\begin{array}{r} 8 \cdot 30 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 8.02 \mathrm{~d} \\ & 8.4 \end{aligned}$	$J=8.1$	
$\begin{aligned} & X^{i} \\ & \left(\mathrm{SO}_{2} \mathrm{Cl}\right) \end{aligned}$	$7 \cdot 57 \mathrm{~m}$	8.17 m	$\begin{array}{r} 8.28 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 7.80 \mathrm{~d} \\ & 8 \cdot 4 \end{aligned}$	$\begin{array}{r} 7 \cdot 88 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 8.15 \mathrm{~d} \\ & 8.5 \end{aligned}$
$\begin{aligned} & X I \\ & (\mathrm{Br}) \end{aligned}$	7.57 m	8.14 m	$\begin{gathered} 8 \cdot 19 \mathrm{~d} \\ J \end{gathered}$	$\begin{gathered} 7.73 \mathrm{~d} \\ 8.5 \end{gathered}$	$7.61 \mathrm{~d}$	$\begin{aligned} & 7.52 \mathrm{~d} \\ & 8.6 \end{aligned}$
$\begin{aligned} & X I I I \\ & \left(\mathrm{Br}_{3}\right) \end{aligned}$	7.66 m	8.20 m	$\begin{array}{r} 8.28 \mathrm{~d} \\ J= \end{array}$	$\begin{aligned} & 7.79 \mathrm{~d} \\ & 8.3 \end{aligned}$	8.15 s	$7 \cdot 85 \mathrm{~s}$

[^1]| Comp. | Start. comp. | Y | Agent | Formula(M.w.) | $\begin{aligned} & \text { Yield, \% } \\ & \text { M.p., }{ }^{\circ} \mathbf{C} \end{aligned}$ | Calculated/Found | | IR, cm^{-1} | ${ }^{1} \mathrm{H}$ NMR (δ, ppm) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | \% C | \% H | | $3 \quad 2$ | $3^{\prime} \quad 2^{\prime}$ |
| XIIIIa | PBD | H | $\mathrm{HI}, \mathrm{HCl}$ | $\underset{(198 \cdot 2)}{\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}}$ | $\begin{gathered} 90 \\ 225-226^{a} \end{gathered}$ | $\begin{aligned} & 78.76 \\ & 78.62 \end{aligned}$ | $\begin{aligned} & 5 \cdot 09 \\ & 5 \cdot 01 \end{aligned}$ | $1680(\mathrm{C}=0)$ | | |
| XIIIb ${ }^{\text {c }}$ | I | Et | $\mathrm{HI}^{\text {b }}$ | $\underset{(258 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}}$ | $\begin{gathered} 90 \\ 228-230 \end{gathered}$ | $\begin{aligned} & 79 \cdot 61 \\ & 79 \cdot 42 \end{aligned}$ | $\begin{aligned} & 6 \cdot 24 \\ & 6 \cdot 19 \end{aligned}$ | 2980 (C-H) | $\begin{gathered} 8.11 \mathrm{~d} \quad 7.83 \mathrm{~d} \\ J=8.3 \mathrm{~Hz} \end{gathered}$ | $\begin{gathered} 7.38 \mathrm{~d} \quad 7.72 \\ J=8.1 \mathrm{~Hz} \end{gathered}$ |
| XIIIC ${ }^{\text {d }}$ | I | Ac | HI | $\underset{(240 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}}$ | $\begin{gathered} 29 \\ 281-284 \end{gathered}$ | $\begin{aligned} & 74 \cdot 98 \\ & 74 \cdot 68 \end{aligned}$ | $\begin{aligned} & 5 \cdot 04 \\ & 5 \cdot 36 \end{aligned}$ | $1670(\mathrm{C}=\mathrm{O})$ | $\begin{gathered} 8.08 \mathrm{~d} \quad 7.90 \mathrm{~d} \\ J=8.3 \mathrm{~Hz} \end{gathered}$ | $\begin{aligned} & 8.06 \mathrm{~d} \quad 7.88 \mathrm{~d} \\ & J=8.2 \mathrm{~Hz} \end{aligned}$ |
| XIIId ${ }^{\text {e }}$ | VI | NH_{2} | $\mathrm{HI}^{\text {b }}$ | $\underset{(213 \cdot 2)}{\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}}$ | $\begin{gathered} 21 \\ 243-245 \end{gathered}$ | ${ }^{73 \cdot 21}{ }_{f}$ | $5 \cdot 21$ | $\begin{aligned} & 3450(\mathrm{~N}-\mathrm{H}) \\ & 3340 \end{aligned}$ | $\begin{gathered} 7.91 \mathrm{~d} \quad 7.48 \mathrm{~d} \\ J=8.37 \mathrm{~Hz} \end{gathered}$ | $\begin{gathered} 6.68 \mathrm{~d} \quad 7.31 \mathrm{~d} \\ J=8.51 \mathrm{~Hz} \end{gathered}$ |

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

Further, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured to confirm molecular structures of all other prepared PBD derivatives on the basis of comparison of their spectral patterns.

The main arguments in favour of the presence of introduced substituents X in position 4 (ring D) may be drawn from the following findings: Two $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ or $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ systems ($J_{\mathrm{HH}} \cong 8.2$ to 8.5 Hz) in ${ }^{1} \mathrm{H}$ NMR spectra of compounds $I-X I$ (Table II) indicate the occurence of two para-disubstituted benzenoic rings C and D in the same molecule. In addition, some proton chemical shifts of the both spin systems are influenced by the nature of the substituents X. This is most conspicuous in the comparison of the couple of the π-electron releasing substituent $X=\mathrm{NH}_{2}$ (compound VII, $\delta 6.83$ to 8.19) and the electron withdrawing substituent $\mathrm{X}=\mathrm{NO}_{2}$ (compound $V I, \delta 7.68,8.22$ and $\delta 7 \cdot 65,8 \cdot 19$, respectively). No such effects might be expected for alternative structures possessing the substituents X in position 4 of the ring B.

Similar substituent effects may be recognized for several ${ }^{13} \mathrm{C}$ signals (Table IV). For example, signals of C-1, C-3 and C-5 carbons were found to be up-field and those of C-2, C-4 and C-6 carbons down-field shifted on changing the nitro group by the amino residue in position 4 (ring D).

EXPERIMENTAL

Melting points were determined on a Boetius block and are uncorrected. Infrared spectra were measured by the KBr technique on a Perkin Elmer 325 spectrometer and are given in cm^{-1}, ${ }^{1} \mathrm{H}$ NMR spectra as well as ${ }^{13} \mathrm{C}$ NMR were measured on a Bruker AM $400(400 \mathrm{MHz})$ instrument in heptadeuterodimethylformamide at $20^{\circ} \mathrm{C}$ using tetramethylsilane as internal standard. Samples for elemental analyses were dried over $\mathrm{P}_{4} \mathrm{O}_{10}$. The purity of the compounds and course of the reactions were followed by means of TLC on Silufol or Alufol foils (Lachema Brno).

> 2-(4'-Acetylbiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (I)

Solution of 5 g PBD in 50 ml of dichloromethane was added dropwise to a boiling suspension of 22.35 g aluminium trichloride and 13.2 g acetyl chloride in 20 ml dichloromethane for 1.5 h . After 5 h of boiling the reaction mixture was cooled and treated with water. The organic layer was separated, washed with water and dried over MgSO_{4}. The solvent was distilled off and the raw product recrystallized from acetone to give $4 \cdot 55 \mathrm{~g}(80 \%)$ of compound I, m.p. $183 \cdot 5-184 \cdot 5^{\circ} \mathrm{C}$.

2-(4'-Bromoacetylbiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (II)

Solution of 2 g PBD in 35 ml dichloromethane was added dropwise to a suspension of 3.91 g AlCl_{3} and 5.93 g bromoacetyl bromide in 20 ml dichloromethane over 1 h . After 3 h of boiling, the reaction mixture was treated with water and the precipitate was collected by suction. Organic layer was diluted with 300 ml of dichloromethane, washed with water, dried over MgSO_{4}, and evaporated. The residue was collected with the precipitate and crystallized from the acetone--dichloromethane mixture. Yield $1.91 \mathrm{~g}(68 \%)$ of compound II, m.p. $232-235^{\circ} \mathrm{C}$.
Table IV

Comp.	Ring A		Ring B				Ring C				Ring D			
	2^{3}	$1^{\text {a }}$	1	2,6	3,5	4	1	2,6	3,5	4	1	2,6	3,5	4
PBD	$165 \cdot 1$	$165 \cdot 0$	124.6	127.4	$130 \cdot 1$	132.6	123.4	128.0	128.4	144.6	$140 \cdot 0$	$127 \cdot 7$	129.8	129.0
I	$165 \cdot 2$	164.9	125.0	127.5	$130 \cdot 0$	132.6	124.7	127.9	128.7	148.4	$146 \cdot 4$	128.1	129.6	$142 \cdot 2$
II	$165 \cdot 4$	$165 \cdot 0$	124.7	127.6	$130 \cdot 0$	132.6	124.5	128.1	128.8	$145 \cdot 1$	$143 \cdot 2$	128.3	127.6	134.6
III	$165 \cdot 1$	$165 \cdot 1$	124.6	127.4	$130 \cdot 1$	132.6	123.2	128.0	128.2	148.7	$144 \cdot 7$	$127 \cdot 4$	126.8	138.4
$V I$	$165 \cdot 4$	164.9	124.6	127.5	$130 \cdot 1$	132.7	124.3	124.8	$130 \cdot 0$	$144 \cdot 2$	$143 \cdot 3$	129.0	128.2	137.5
VII	$165 \cdot 3$	$164 \cdot 9$	124.7	127.4	$130 \cdot 0$	132.5	121.5	127.9	126.7	$145 \cdot 3$	127.1	128.3	115.1	$150 \cdot 5$
\boldsymbol{X}	$165 \cdot 2$	$165 \cdot 0$	124.5	127.4	$130 \cdot 1$	$132 \cdot 7$	123.6	128.0	128.5	148.4	$144 \cdot 1$	127.3	$127 \cdot 3$	$140 \cdot 5$
$\delta_{\mathrm{VI}-\delta_{\mathrm{VII}}}$	$0 \cdot 1$	$0 \cdot 0$	-0.1	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 2$	2.8	$-3 \cdot 1$	$3 \cdot 3$	-1.1	$16 \cdot 2$	0.7	$13 \cdot 1$	-13.0

${ }^{a}$ These signals could be interchanged.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

2-(4'-(1-Hydroxyethyl)biphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (III)

$\mathrm{NaBH}_{4}(0.33 \mathrm{~g})$ was added to a solution of 2 g PBD in 150 ml of benzene-ethanol mixture (2:1). After 2 h stirring the solvent was distilled off and the solid residue was crystallized from ethanol to yield 1.74 g of derivative $I I I(87 \%)$, m.p. $175-178^{\circ} \mathrm{C}$.

2-(4'-Acetylbiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole Hydrazone (IV)

A mixture of 1.5 g compound $I, 1.7 \mathrm{~g} 80 \%$ hydrazine hydrate and 0.5 ml glacial acetic acid in 30 ml dichloroethane was refluxed for 10 h . After cooling the precipitate was separated by suction and recrystallized from toluene. The yield of hydrazone $I V$ was $1 \cdot 2 \mathrm{~g}(77 \%)$, m.p. $314-315^{\circ} \mathrm{C}$.

2-(4'-Vinylbiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (V)

A mixture of 1 g alcohol $I I I$ and $0.5 \mathrm{~g} \mathrm{P}_{4} \mathrm{O}_{10}$ in 50 ml benzene was refluxed for 10 h . Then 1 g of $\mathrm{P}_{4} \mathrm{O}_{10}$ was added and the mixture was repeatedly refluxed for 30 h . The solid was filtered off and the filtrate was evaporated in vacuum. The raw product was recrystallized three times from ethanol to give $0.4 \mathrm{~g}(42 \%)$ of compound V, m.p. $132-134^{\circ} \mathrm{C}$.

2-(4'-Nitrobiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (VI)

A mixture of $10 \mathrm{ml} 63 \% \mathrm{HNO}_{3}$ and $12 \mathrm{ml} 96 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ was dropped to a stirred ice cooled solution of 2 g PBD in 40 ml dichloromethane during 1 h . The mixture was continuously stirred 2 h at room temperature and poured into 100 ml of ice-water. The precipitated product was extracted three times with 50 ml chloroform, the combined organic layers were washed twice with 50 ml water and dried over calcium chloride. The solvent was evaporated and the residue was crystallized from dioxane. The yield of the nitro derivative $V I$ was $1.5 \mathrm{~g}(65 \%)$, m.p. 224 to $226^{\circ} \mathrm{C}$.

2-(4'-Aminobiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (VII)
a) Dry THF (5 ml) was dropped to 0.34 g natrium borohydride and 1 g sulfur under vigorous stirring and ice cooling. After 15 min , the solution of 1 g of the nitro compound $V I$ in 60 ml THF was dropped in. The mixture was stirred under reflux for 16 h , then treated with 150 ml water and the forming suspension was immediately extracted twice with 50 ml chloroform. Collected organic layers were dried over magnesium sulfate and the solvent was distilled off in vacuum. After recrystallization from benzene (charcoal) the yield of amino derivative VII was 0.8 g (55\%), m.p. $224-26^{\circ} \mathrm{C}$.
b) A solution of $5.5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S} .9 \mathrm{H}_{2} \mathrm{O}$ in 5 ml of water was added to a stirred suspension of 1 g compound $V I$ in 80 ml of benzene. Concentrated hydrochloric acid ($2 \cdot 1 \mathrm{ml}$) was then dropped to the mixture. After addition of 0.05 g benzyldodecyldimethylammonium bromide, the reaction mixture was repeatedly stirred for 30 h at $40^{\circ} \mathrm{C}$. The aqueous layer was twice washed with 50 ml chloroform, combined organic layers were dried over magnesium sulfate and evaporated in vacuum. The raw product was purified by column chromatography (eluent chloroform-acetone $15: 1$, adsorbent silica gel) and crystallized from toluene. Yield 0.4 g of compound VII, m.p. $225-226^{\circ} \mathrm{C}$ (45%)
c) A solution of 0.5 g nitro derivative $V I$ in 8 ml DMF was added to a stirred solution of 0.72 g ammonium chloride in 3 ml of water. Then 1 g of zinc dust was added at $65^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature for 30 min and filtered. Precipitated crystals
were filtered off and washed with 20 ml methanol and 20 ml ether. The yield of the amino derivative VII was 0.15 g (45%), m.p. $224-26^{\circ} \mathrm{C}$.

2-(4'-Acetylaminobiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (VIII)

Acetyl chloride (1 ml) was added to a solution of 0.2 g amine $V I I$, in 1 ml dry pyridine and 70 ml benzene under reflux. The mixture was continuously refluxed for 40 min and then 70 ml water was added. The liquid phases were separated and the aqueous layer was extracted with two portions of 30 ml chloroform. The combined organic layers were dried over potassium carbonate and the solvent was distilled off in vacuum. The yield of compound VIII after recrystallization from benzene was $0.15 \mathrm{~g}(66 \%)$, m.p. $227-229^{\circ} \mathrm{C}$.

4-(5-Phenyl-1,3,4-oxadiazole-2-yl)-biphenyl-4'-yl Sulfonic Acid (IX)

a) Chlorosulfonic acid (8 ml) was dropped to a stirred solution of 2 g PBD in 20 ml dichloromethane at $20^{\circ} \mathrm{C}$. The mixture was heated to gentle reffux for 2 h and then decomposed by pouring on 200 g ice. The solid was filtered off, washed with 10 ml water and crystallized from dioxane--water (1:3). The yield of the sulfonic acid $I X$ was $2.0 \mathrm{~g}(96 \%)$, m.p. $>360^{\circ} \mathrm{C}$.
b) PBD (2 g) in 12 ml of conc. sulfuric acid was stirred at room temperature for 2 h . The mixture was decomposed by pouring on 200 g of ice, the solid was filtered off, washed with 10 ml water and crystallized from dioxane-water (1:3). The yield of the sulfonic acid $I X$ was 1.8 g (87%), m.p. $>360^{\circ} \mathrm{C}$.

4-(5-Phenyl-1,3,4-oxadiazole-2-yl)-biphenyl-4'-yl Sulfonyl Chloride (X)

A mixture of 8 g sulfonic acid $I X, 150 \mathrm{ml}$ thionyl chloride and 1 ml DMF was heated for 3 h . The excessive thionyl chloride was distilled off and the residue was recrystallized from toluene (charcoal). The yield of the obtained sulfonyl chloride X was $6 \mathrm{~g}(72 \%)$, m.p. $204-206^{\circ} \mathrm{C}$.

2-(4'-Bromobiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (XI)

$\operatorname{PBD}(2 \mathrm{~g})$ was dissolved in 21 ml of diluted sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O} 7: 1\right)$. N -Bromosuccinimide (1.2 g) was added in small portions under vigorous stirring at $60^{\circ} \mathrm{C}$. The mixture was continuously stirred at the same temperature for 4 h and then poured into 200 ml of ice-water mixture. The precipitate was filtered off and crystalized from ethanol. Yield $1.6 \mathrm{~g}(63 \%)$ of compound $X I$, m.p. $180-181^{\circ} \mathrm{C}$.

2-($2^{\prime}, 4^{\prime}, 5^{\prime}$-Tribromobiphenyl-4-yl)-5-phenyl-1,3,4-oxadiazole (XII)

A solution of 1 g PBD in 50 ml carbon disulfide was added to a stirred boiling suspension of 0.3 g iron powder and 1 ml bromine in 10 ml of the same solvent. The reaction mixture was repeatedly stirred and refluxed for 4 h and finally treated with a solution of 10 g sodium sulfite in 80 ml of water. The precipitate was dissolved by addition of 50 ml of chloroform and the separated aqueous layer was washed twice with the same solvent. The combined organic layers were dried over calcium chloride and the solvent was distilled off. After crystallization from toluene the yield of the compound $X I I$ was $1 \mathrm{~g}(79 \%)$, m.p. $225-227^{\circ} \mathrm{C}$.

Hydrolysis of PBD, I and VI

A mixture of the given derivative $(0.0017 \mathrm{~mol}), 50 \mathrm{ml}$ of acetic acid and 5 ml hydrohalogenic
acid was refluxed for 15 h . After dilution with 100 ml water the precipitate was filtered off and washed with $15 \mathrm{ml} 10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and twice with 15 ml of water. After crystallization from ethanol, the yields of Y-substituted carboxylic acids XIII were $0 \cdot 1-0.6 \mathrm{~g}$. Benzoic acid, as the second component, was isolated by extraction of the filtrate with ether, drying over calcium chloride and evaporating the solvent. The results are summarized in Table III.

REFERENCES

1. Hayes F. N.: J. Am. Chem. Soc. 74, 1106 (1952).
2. Krasovtskii B. M.: Organicheskie lyuminofory. Khimiya, Moscow 1976.
3. Blackhall A., Brydon D.: J. Chem. Soc., Perkin Trans. 1 1980, 773.
4. Grekov A. P., Azen R. S.: Zh. Obshch. Khim. 31, 1919 (1961).
5. Günther E.: Justus Liebigs Ann. Chem. 252, 62 (1890).
6. Ray F. E., Rieveschl G., jr: Org. Synth., Coll. Vol. 3, 23 (1955).
7. Saunders J., Slocombe R. J., Hardy E. E.: J. Am. Chem. Soc. 71, 752 (1949).
8. Bremser W.: ${ }^{13}$ C NMR Spectra Data. Verlag Chemie GmbH, Weinheim 1981.

Translated by the author (P.L.).

[^0]: ${ }^{a}$ Calculated: $19 \cdot 06 \% \mathrm{Br}$, found: $19 \cdot 16 \% \mathrm{Br} ;{ }^{b}$ calculated: $8.95 \% \mathrm{Cl}$, found $9 \cdot 22 \% \mathrm{Cl} ;{ }^{c}$ calculated: $21 \cdot 18 \% \mathrm{Br}$, found: $21 \cdot 05 \% \mathrm{Br}$; ${ }^{d}$ calculated: $44 \cdot 86 \% \mathrm{Br}$, found: $44 \cdot 46 \% \mathrm{Br}$.

 Collect. Czech. Chem. Commun. (Vol. 56) (1991)

[^1]: ${ }^{a}$ Approximative doublets of two center multiplets; ${ }^{b} 2.64 \mathrm{~s}\left(\mathrm{CH}_{3}\right) ;{ }^{c} 4.86 \mathrm{~s}\left(\mathrm{CH}_{2}\right) ;{ }^{d}{ }^{1} .46 \mathrm{~d}$ $\left(\mathrm{CH}_{3}, J=6.4\right), 4.92 \mathrm{q}(\mathrm{CH}, J=6.4), 5.26 \mathrm{~s}(\mathrm{OH}) ;{ }^{e} 2.17 \mathrm{~s}\left(\mathrm{CH}_{3}\right) ;{ }^{f} 6.77 \mathrm{q}(\mathrm{CH}=), 5.83 \mathrm{~d}$ $\left(=\mathrm{CH}-\mathrm{H}, J_{\text {trans }}=17.6\right), 5.31 \mathrm{~d}\left(-\mathrm{CH}=\mathrm{H}, J_{\text {cis }}=10.9\right) ;{ }^{g} 5.54 \mathrm{~s}\left(\mathrm{NH}_{2}\right) ;{ }^{h} 2.23 \mathrm{~s}\left(\mathrm{CH}_{3}\right)$, $7.30 \mathrm{~s}(\mathrm{NH}) ;{ }^{i} \mathrm{CDCl}_{3}$ was used as a solvent.

